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Abstract

When engaging with a textbook, students are inclined to highlight key content. Although stu-

dents believe that highlighting and subsequent review of the highlights will further their educa-

tional goals, the psychological literature provides little evidence of benefits. Nonetheless, a

student’s choice of text for highlighting may serve as a window into her mental state—her level

of comprehension, grasp of the key ideas, reading goals, and so on. We explore this hypothesis

via an experiment in which 400 participants read three sections from a college-level biology text,

briefly reviewed the text, and then took a quiz on the material. During initial reading, participants

were able to highlight words, phrases, and sentences, and these highlights were displayed along

with the complete text during the subsequent review. Consistent with past research, the amount of

highlighted material is unrelated to quiz performance. Nonetheless, highlighting patterns may

allow us to infer reader comprehension and interests. Using multiple representations of the high-

lighting patterns, we built probabilistic models to predict quiz performance and matrix factoriza-

tion models to predict what content would be highlighted in one passage from highlights in other

passages. We find that quiz score prediction accuracy reliably improves with the inclusion of high-

lighting data (by about 1%–2%), both for held-out students and for held-out student questions

(i.e., questions selected randomly for each student), but not for held-out questions. Furthermore,

an individual’s highlighting pattern is informative of what she highlights elsewhere. Our long-term

goal is to design digital textbooks that serve not only as conduits of information into the reader’s

mind but also allow us to draw inferences about the reader at a point where interventions may

increase the effectiveness of the material.
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1. Introduction

Educational data mining is premised on the assumption that we can collect sources of

data that will provide insight into students’ knowledge state—the degree to which they

understand and can apply specific concepts and facts. Typically, such data are first

observed when students practice solving problems or take quizzes. There can be a long

lag between the first exposure to new material and observations of students’ performance.

For example, in a traditional classroom where students are assigned a reading from a

printed textbook and then take a quiz days later in class, the opportunity to perform

prompt interventions has been lost. With the advent of electronic texts, data can be col-

lected from students during their initial exposure to unfamiliar reading material, and if

knowledge state can be inferred from these data, early interventions can be performed.

To model engagement and comprehension, an obvious source of information is the gaze

pattern of a student reading a textbook (Mills, Graesser, Risko, & D’Mello, 2017). How-

ever, reliable gaze data are quite difficult to collect in a naturalistic setting. Fortunately,

explicit behavioral measures are often available: Given students’ proclivity to highlight

textbooks (Annis & Kent Davis, 1978; Bell & Limber, 2009; Kornell & Bjork, 2007;

Lonka, Lindblom-Yl¨anne, & Maury, 1994), we can leverage highlights as a data source

to draw inferences about individuals’ attentional and knowledge states.1

Past research has examined the conditions under which highlighting impacts learning

and memory. We review this literature in order to motivate the possibility that highlight-

ing might reflect and influence cognitive states, and therefore be useful in predictive

modeling.

1.1. The utility of highlighting

Highlighting may benefit a reader for two distinct reasons: First, it may encourage a

deeper level of processing of the material (Craik & Lockhart, 1972); second, it may func-

tion as external memory (Faw & Waller, 1976), also known in the literature as a storage
function, which can support subsequent study.

Fowler and Barker (1974) explored depth of processing by asking undergraduates to

read articles from Scientific American in four highlighting conditions: active, in which

students highlighted as much content found no difference between the techniques as they

wanted to; passive yoked, in which students read marked texts that had been highlighted

by yoked participants in the active condition; passive expert-based, in which students

read marked texts that had been highlighted by the experimenters to reflect critical mate-

rial; and control, in which students read articles without any highlights. The conjecture is

that active highlighting might engage semantic analysis to select a subset of material,

whereas passive highlighting would seem to benefit the student only by focusing attention

relative to a condition in which no highlights appeared in the text. Thus, the conditions

may affect the depth of processing that highlights induce.

No difference was found between conditions in overall exam score. However, if the

sentences in the text that are critical for a given test item had been highlighted, that
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item’s performance benefits significantly. Specifically, active highlighting yields superior

performance on these test items compared to passive-yoked highlights, and passive

expert-based highlighting yields superior performance on these test items compared to the

control condition. These findings provide weak evidence for the hypothesis that active

highlighting engages a deeper level of processing than passive highlighting, which in turn

is superior to not highlighting.

To push the depth-of-processing perspective further, one can require students to engage

even more substantively with the material via a constrained active condition in which stu-

dents are restricted to highlighting only one sentence per paragraph (Johnson, 1988; Rick-

ards & August, 1975; Wollen, Cone, Britcher, & Mindemann, 1985). This constraint

encourages students to identify the most important idea in a paragraph. Rickards and

August (1975) investigated the difference between three conditions in which participants

were asked to make one highlight per paragraph, either the sentence they deemed most

important, least important, or any arbitrary sentence. Highlighting the most important sen-

tence yields superior test performance to highlighting the least important sentence or to

not highlighting at all. However, students who can highlight any single sentence without

restrictions performed best among all groups and recalled significantly more incidental

material than the group who highlighted the most important sentence per paragraph. The

authors argue that the task demand for the group that highlighted the most important sen-

tence per paragraph may have mitigated against learning the less important material.

Nonetheless, imposing a constraint on the quantity of text highlighted may encourage

“active, constructive learning” (Rickards & August, 1975, p. 865), and thereby boosts

memory retention.

By definition, highlighting obviates the need for students to explicitly synthesize and

reconstruct content. Consequently, the generation effect (Slamecka & Graf, 1978) might

suggest that highlighting could harm performance by enabling readers to treat the superfi-

cial act of highlighting as sufficient engagement with the material. However, active high-

lighting does demand selection and discrimination of content, and thus might serve as a

closer proxy to generation than a pure reading strategy. Consistent with the notion that

active highlighting shares some of the benefits of generation, the effects of each are more

potent when students have some prior knowledge of the material (for the generation

effect, see Lutz, Briggs, & Cain, 2003; McNamara, 1995; for highlighting, see Blanchard

& Mikkelson, 1987; Klare, Mabry, & Gustafson, 1955; Wollen et al., 1985).

Beyond the depth-of-processing argument, a distinct potential benefit of highlighting is

its use as external memory. Highlighting can be viewed as facilitating the von Restorff

effect (Cashen & Leicht, 1970; Fowler & Barker, 1974; Nist & Hogrebe, 1987; Wallace,

1965; Yue, Storm, Kornell, & Bjork, 2015), wherein the highlighted items stand out and

thus are more memorable. Moreover, the salience of these items makes them easier to

review. This phenomenon can be observed in the studies obtaining improved recall for

passive highlighting or experimenter-provided highlights (Cashen & Leicht, 1970; Crouse

& Idstein, 1972; Hartley, Bartlett, & Branthwaite, 1980).

Although highlighting has potential to benefit learners, some analyses find no benefit

or detrimental effects of highlighting. For instance, Peterson (1991) found a disadvantage
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for inference-based questions when students highlight, and Dunlosky, Rawson, Marsh,

Nathan, and Willingham (2013) argue that highlighting may be more beneficial for call-

ing attention to individual concepts and facts rather than the connections among them;

however, Ben-Yehudah and Eshet-Alkalai (2018) found a benefit of highlighting for infer-

ence-based as well as fact-based questions. Ben-Yehudah and Eshet-Alkalai (2018) also

examined the effect of presentation medium and found that highlighting improves exam

scores relative to a no-highlight control for print media, but not for digital media. Possi-

bly, depth of processing is limited for digital media due to demands on motor control to

point and highlight with a cursor. Other researchers have argued that highlighting is inef-

fective because students often do not know how to highlight and thus the activity degen-

erates to a mechanism for tracking position in the text which requires only superficial

processing (Hoon, 1974; Idstein & Jenkins, 1972; Nist & Kirby, 1989); this concern may

be exacerbated for low-skilled readers who are less capable of marking important content

(Bell & Limber, 2009). It is therefore not entirely surprising that recent reviews of the lit-

erature have reached diverging conclusions about the benefits of highlighting (contrast

Dunlosky et al., 2013, and Miyatsu, Nguyen, & McDaniel, 2018).

1.2. Our contributions

Nearly all past work has examined highlighting at a condition level, asking whether

one variety of highlighting yields enhanced student learning over another variety. When

an individual student’s specific highlights are considered, they are typically cast in terms

of summary statistics such as the proportion of sentences highlighted, the number of main

concepts highlighted, and the criticality of sentences highlighted (Blanchard & Mikkel-

son, 1987; Fowler & Barker, 1974; Idstein & Jenkins, 1972; Johnson, 1988; Nist &

Kirby, 1989; Rickards & August, 1975; Wollen et al., 1985; Yue et al., 2015). In this

article, we focus on individual students, asking whether the specific pattern of highlights

that one student makes can predict whether he or she will learn the material better than

another student with a different pattern of highlights. We thus move from the domain of

cognitive psychology to the domain of data mining.

Past work has also emphasized dependent measures based on overall performance,

either recall or the cloze procedure (Annis & Kent Davis, 1978; Blanchard & Mikkelson,

1987; Cashen & Leicht, 1970; Hartley et al., 1980; Idstein & Jenkins, 1972; Johnson,

1988; Leutner, Leopold, & Elzen-Rump, 2007; Wollen et al., 1985). Relatively little

research has focused on accuracy on specific questions (Fowler & Barker, 1974; Nist &

Hogrebe, 1987; Peterson, 1991; Yue et al., 2015). In this article, we construct models

parameterized for specific questions and conditioned on the detailed pattern of highlights,

offering in principle a finer granularity of prediction.

The emphasis of past work has been on understanding when highlighting is beneficial

and what form of highlighting is beneficial. Our data mining perspective suggests that

another interesting question to ask is whether one can predict an individual’s specific pat-

tern of highlights on new material given the individual’s previous highlights. Such
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predictions might be useful for guiding a student to material that interests them or detect-

ing when students are mind wandering by the deviation from their predicted behavior.

To explore the value of highlights as a data source, we conducted an experiment in

which participants read and highlighted sections of an electronic textbook, reviewed the

material with highlights, and then took a delayed quiz. Observed highlights were used to

predict quiz scores using feature-based regression models that extend item-response the-

ory (Rasch, 1980). The pattern of highlights from two passages was also used to predict

the highlights in a third passage using matrix factorization models from the collaborative

filtering literature (Shi, Larson, & Hanjalic, 2014).

To summarize our results, highlights improve predictions of quiz performance for

held-out participants or held-out participant questions (i.e., holding out a random subset

of questions from each participant), but not for held-out questions. The predictive power

of highlights is modest in magnitude, but highlights do offer information about the partic-

ipant’s knowledge state, above and beyond the participant’s mean ability and a question’s

mean difficulty. In exploring various representations of the highlights, we found that cod-

ing them in terms of word primitives, that is, as a feature vector indicating which words

are highlighted, achieves the best predictions. We also found that an individual’s high-

lighting pattern informs predictions of what he or she would highlight elsewhere.

2. Methodology

Participants read passages from a college-level biology textbook. They later reviewed

the passages and then took a short quiz generated from factual material from the pas-

sages. During initial reading, participants were allowed to highlight portions of the text

(words, phrases, or sentences). During the review phase, these highlights were displayed

inline with the text. To encourage highlighting, participants were informed that highlights

made during the reading phase would be presented along with the full text during the

review phase, and that the review phase would be sufficiently brief that a complete re-

reading of the text would not be feasible.

2.1. Participants

Participants aged 18 and above were recruited from Amazon Mechanical Turk. A total

of 400 people completed the experiment and were paid $3.60. Data from nine participants

were discarded. The experiment took 25–30 min to complete. To incentivize participants,

they were told that they would be entered into a raffle for a bonus prize of $15.00, with
the number of entries equal to the number of correct responses to the quiz questions.

After testing 198 participants, we became concerned that some minor details of the

experiment might be influencing results. Thus, we tested the next 202 participants using a

slightly altered version of the experiment. We will refer to these two versions as Condi-

tion A and Condition B. Of the nine participants removed from the study, six in Condi-

tion A reported that they were unable to use the highlighting functionality in their web
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browser and three in Condition B indicated that they were familiar with the experiment

material (despite having indicated no familiarity in advance of the experiment).

2.2. Materials

Three passages were selected from the Openstax Biology textbook (Rye, Wise, Juru-

kovski, Desaix, & Avissar, 2016). Biology was used as a domain for several reasons.

First, the foundations of biology are a set of concepts and facts upon which scientific

understanding is built; improving retention of these fundamental concepts and facts is

critical to mastery of the field. Second, the Openstax biology textbook has been widely

adopted, and we hope to build on the current study to a follow-up study using actual stu-

dents in college-level courses. The choice of text is likely not critical: Dunlosky et al.

(2013) note that a variety of content domains have been used to study highlighting, from

aerodynamics to ancient Greek schools, and the pattern of results has been similar regard-

less of the domain.

The passages were chosen with the expectation that they could be understood by a col-

lege-aged reader with no background in biology. The three passages concern the topic of

sterilization: one serving as an introduction, one discussing procedures, and the last sum-

marizing commercial uses. The passages were shown in this order for all participants.

Twelve factual quiz questions were generated by turning specific sentences from the pas-

sages into fill-in-the-blank (hereafter, FIB) questions. Three questions are drawn from the

first passage, four from the second passage, and five from the final passage. These 12

questions were transformed into 12 additional multiple-choice (hereafter, MC) questions,
each question comprised of the correct response and three lures as alternatives.

In scoring, all questions had equal weighting, and we computed a normalized quiz
score in the range 0–1 reflecting the probability of a correct answer. For judging FIB

response correctness, a liberal criterion was used: A response is considered correct if the

edit distance between the actual and correct responses is less than 25% of the length of

the correct response.

2.3. Procedure

The experiment is divided into four phases: instructions, reading, review, and quiz.
In the instruction phase, participants were given the structure of the experiment and

the makeup of the quiz, and they were encouraged to highlight by being told that the

highlights would be available during the review phase. Participants were required to

maintain focus on the experiment window, because Amazon Mechanical Turk workers

tend to multitask. In Condition A, participation was terminated if the experiment window

defocused twice. Because some applications running on the participants’ computer could

accidentally defocus the window, in condition B, we eliminated the termination constraint

and replaced it with a requirement that the experiment window be full screen to minimize

distractions. In Condition A, we did not screen participants to inquire about their back-

ground in biology, but in Condition B, we asked participants if they had taken a college-

level biology course in the previous 3 years and to not participate in the experiment if

6 of 25 A. Winchell, A. Lan, M. Mozer / Cognitive Science 44 (2020)



they had. To ensure that participants were able to anticipate the nature of the text and

questions, in Condition B, we added a sample paragraph and question to the instructions.

In the reading phase, participants were presented with the three passages sequentially.

In Condition A, each passage was on the screen for 5 min; in Condition B, each passage

was displayed for 6 min; the increase in time between Conditions was to alleviate partici-

pant concerns of feeling rushed during the reading of the more technical passage as indi-

cated by emails detailing these concerns. During the reading phase, participants were

allowed to highlight text by selecting one or more words using the mouse. Highlighting a

portion of a word would cause the full word to be highlighted. Participants could unhigh-

light by selecting a previously highlighted sequence of words. If the selected text captures

any portion of an existing highlight but extends beyond it, the existing highlight is

expanded to include the new selection. A single selection of the text may highlight more

than one sentence at a time, but it is not allowed to cross paragraph boundaries.

In the review phase, participants were presented with the same three passages sequen-

tially, displayed along with any highlights made during the reading phase, each passage

on the screen for 1 min. Additional highlights were not allowed during the review phase.

During the reading and review phases, a timer at the top of the screen indicated time

remaining for the current passage. After the timer expired, the screen was cleared and a

message was displayed describing the next step of the experiment. Throughout the course

of the experiment, a progress bar was displayed at the bottom of the screen that indicated

the proportion of the experiment completed.

In the quiz phase, participants first answered the 12 FIB questions followed by the 12

MC questions. Questions were randomized within question type, as determined by the

condition. In Condition A, the order was randomized for each participant. In Condition

B, questions were blocked by passage, maintaining the order in which the passages were

read, but randomized within block. (The reason for blocking questions was to better con-

trol the time between reading of the passage and the quiz.) At the end of the quiz phase,

we asked participants in Condition B whether in retrospect the material was familiar to

them. Three participants were eliminated due to their reported familiarity with the mate-

rial. In Condition B, we also asked several questions relating to the participants’ per-

ceived effectiveness of highlighting.

3. Results

Overall, participants correctly answered 35% of fill-in-the-blank (FIB) questions and

64% of MC questions. Answering the FIB version of a question boosted the accuracy of

the MC version of the questions to 83% (Table 1). In the three sections that follow, we

(a) perform traditional hypothesis testing to explore the relationship between summary

statistics of the highlights and quiz score, (b) construct models that use the specific pat-

tern of highlights to predict quiz score, and (c) construct models that use the specific pat-

tern of highlights in two passages to predict highlights in a third passage.
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3.1. Hypothesis testing

We conducted a two-way ANOVA to compare the effect of experiment Condition (A vs.

B) and passage number (1, 2, 3) on quiz score, with participants as the random factor. A

main effect of experiment Condition is observed (F(1, 389) = 7.38, p = .007), with par-

ticipants in Condition A performing better (50.8% vs. 46.3%); we conjecture the reason

is that Condition B ensures there is some lag between reviewing a passage and being

asked a question on that passage, preventing access to quiz answers from working mem-

ory. A main effect of passage number is observed (F(2, 778) = 53.6, p < .001), with the

questions associated with one passage being harder than those of the other two (42.0%

vs. 52.2% vs. 51.3%). Importantly, no interaction is observed between version and pas-

sage (F(2, 778) = 1.45, p = .24); therefore, in all subsequent analyses, we combine data

from the two conditions.

We next examine the relationship between summary statistics of highlighting and over-

all quiz performance. Fig. 1 shows a scatter plot of the proportion of sentences high-

lighted and the normalized quiz score, with each point in the plot corresponding to a

single participant. As shown along the top margin, the proportion of sentences highlighted

appears to be a mixture of a unimodal distribution and an impulse function at 0 (individu-

als who did not highlight). The normalized quiz score, shown along the right margin, is

unimodal with a mean of 0.49. Although the scatter plot suggests no strong functional

relationship between the amount of text highlighted and quiz performance, the correlation

coefficient is 0.17 (p < .001). This correlation drops to 0.079 (p = .15) when participants

who did not highlight are removed from the analysis.

Because each question in our quiz is based on a specific sentence in the text passages,

we can define the critical sentence required to answer a given quiz question. Following

Yue et al. (2015), we investigated whether highlighting the critical sentence is related to

performance on the corresponding quiz question. Yue et al. calculated a highlighting effi-
ciency score for each participant, defined as the ratio of highlighted critical sentences to

the total number of highlighted sentences. The correlation between highlighting efficiency

and the normalized quiz score is 0.12 (p = .028). Thus, neither the absolute nor relative

number of highlights is a robust predictor of quiz performance.

Turning to an analysis of specific quiz questions, we examine the relationship between

whether or not a critical sentence is highlighted and whether or not the corresponding

question is answered correctly. Analyzing the FIB and MC questions separately, a two-

tailed matched sample t-test with participants as the random factor indicates accuracy is

Table 1

Distribution of response correctness on multiple-choice (MC) and fill-in-the-blank (FIB) versions of a ques-

tion

MC Incorrect MC Correct

FIB Incorrect 0.30 0.35

FIB Correct 0.06 0.29
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significantly higher for individuals who highlight the critical sentence than for those who

did not, both for FIB questions (37.3% vs. 29.8%, t(296) = 3.23, p = .001, d = 0.27) and

MC questions (68.2% vs. 62.0%, t(296) = 4.14, p < .001, d = 0.70). Participants who

highlighted none or all of the critical sentences had to be excluded from this analysis.

At the end of the experiment, participants in condition B were asked, “Do you consider

highlighting an effective study strategy?” The proportion of words in the text highlighted by

participants was related to their response as indicated by a one-way ANOVA: Those respond-

ing no, sometimes, and yes highlighted an average proportion of 0.21 (SE = 0.04), 0.31

(SE = 0.02), and 0.32 (SE = 0.04) words, respectively (F(2, 198) = 3.24, p = .041), con-

sistent with their beliefs about highlighting effectiveness. More surprisingly, their beliefs

were also correlated with quiz score: Those responding no, sometimes, and yes attained quiz

scores of 0.36 (SE = 0.03), 0.44 (SE = 0.02), and 0.46 (SE = 0.02), respectively (F(2,
198) = 4.93, p = .0081). This positive relationship between survey responses and quiz

score contrasts with a negative relationship observed by Yue et al. (2015). Their experiment

was remarkably similar in structure to ours, and it differed primarily in that their retention

intervals were a week long, they collected paper highlights, and their participants were col-

lege undergraduates, not Amazon Mechanical Turk workers. Perhaps, the difference in

results is due to the populations: Whereas college undergraduates have recent experience

highlighting, Amazon Mechanical Turk workers may not.

Fig. 1. Scatter plot of proportion of sentences highlighted versus normalized quiz score for each participant.

The marginal distributions are shown above and to the right of the scatter plot.
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3.2. Predicting quiz score

We next examine the specific patterns of highlights and their relationship to perfor-

mance. There is diversity in the manner in which individuals highlight, as illustrated in

Fig. 2, which shows highlights produced by three participants for one specific paragraph

of text. Highlights demarcate blocks of text ranging from single words to phrases to com-

plete sentences. To distinguish among these highlighting patterns, we must specify an

encoding of the highlighting data.

3.2.1. Highlight encodings
In all analyses, we ignore the time course and sequence of text selections and deletions

that the participant made. Instead, we consider only the final highlighted state of each

passage. We can parse the highlights at the granularity of a sentence and count a sentence

as highlighted if any word in the sentence is highlighted. (We define sentences as delin-

eated by periods, exclamation marks, and question marks.) We can also parse highlights

at the granularity of individual words. Intermediate between sentences and words is the

level of fragments, which are phrases delineated by commas, semicolons, and colons. We

subjectively excluded some commas as segment boundaries, for example, commas that

delineate lists of items. Fig. 3 gives an example of our fragment partitioning. A fragment

is counted as highlighted if any word in the fragment is highlighted. The three passages

contain a total of 2,291 word tokens, 235 fragments, and 117 sentences.

Fig. 2. A paragraph of text as highlighted by three randomly selected participants.
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The highlighting pattern of each participant can be described as a binary feature vector

whose length depends on the lexical elements. The high-dimensional word-level represen-

tation captures the exact pattern of highlights, but using this representation in a regression

model introduces many free parameters; the low-dimensional sentence-level representa-

tion loses some detail in an individual’s highlighting pattern but supports a more compact

regression model.

Our intermediate-level fragment representation was intended as a compromise, captur-

ing detail while not requiring too many free parameters. In contrast to our manually seg-

mented fragment representation, we explored two additional intermediate-level

representations, both derived automatically: logistic principal components analysis

(LPCA; Collins, Dasgupta, & Schapire, 2002; Lee, Huang, & Hu, 2010) and a traditional

natural-language processing methodology for segmentation into fragments.

LPCA is an unsupervised method for binary data. Traditional principal components

analysis (PCA) seeks to find a small set of orthogonal components that capture the vari-

ance in the original data. LPCA primarily differs from PCA in that observations are

assumed to be drawn from a Bernoulli distribution rather than a Gaussian. LPCA was

applied to the word representation to reduce its dimensionality from 2,291 to 120. The

value 120 was chosen to be in line with the dimensionality of the sentence representation,

and it also preserved 99% of the variance in the data. Using the algorithm variant of

Landgraf and Lee (2015), we performed fivefold cross-validation to tune a hyperparame-

ter.2

We also considered a representation based on a traditional natural-language processing

methodology, constituency parsing, which breaks a sentence into its constituents or

chunks, as in the following example (Abney, 1991):

[I begin] [with an intuition]: [when I read] [a sentence], [I read it] [a chunk] [at a

time].

Fig. 3. Example of the fragment representation where the alternating colors signify the different fragments.
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Although one could construct a highlighting representation based on such constituents,

it would be much higher dimensionality than our fragment representation. To reduce the

dimensionality, we used the following procedure. First, we generated constituency parse

trees for each sentence in the corpus using the Stanford CoreNLP parser (Manning et al.,

2014). Then, we descended the tree from the root until we identified a depth at which all

the words in a sentence were contained in two or more subtrees. We created a feature for

each subtree, yielding 340 features that broke up the passages in a manner similar to that

achieved by the fragment representation. However, the performance of the automatically

derived subtree representation yielded results that were significantly worse than those

from the fragment representation. We thus excluded it from our representation. We also

explored a representation based on dependency parse trees using the Stanford CoreNLP

parser (Manning et al., 2014), but it performed even worse.

3.2.2. Quiz prediction models
We now turn to the prediction of quiz performance given an individual’s highlights, as

represented by one of the schemes described in the previous section. Following a long

tradition in the educational data mining community, we use feature-based regression mod-

els. Feature-based regression models include performance factor analysis (PFA; Pavlik,

Cen, & Koedinger, 2009) and deep knowledge tracing (Piech et al., 2015); these two

approaches differ in that features are handcrafted in the former and learned from the data

in the latter. In addition to features that encode past history of student performance, some

models have incorporated side information, that is, information not directly related to the

dependent measure being predicted. Examples of side information include viewing times

and requests for hints (e.g., Baker, Corbett, & Aleven, 2008; Zhang, Xiong, Zhao,

Botelho, & Heffernan, 2017). Highlighting patterns constitute a novel source of side

information. In addition to observable features, some models, such as PFA, include latent

features—features inferred from but not explicit in the data. The classic latent feature

model in student modeling, item-response theory (Baker & Kim, 2004), forms the back-

bone of our regression approach. Item-response theory combines side information and

latent features into a single interpretable model, which will allow us to discern how much

leverage highlights give in predicting quiz performance.

To formalize, let nP denote the number of participants given a test with nI items, with

ypi = 1 if the response of participant p to item i is correct. The one-parameter logistic

(1PL) variant of item-response theory makes the prediction:

Prðypi ¼ 1Þ¼ logisticðαp�δiÞ,

where αp denotes the latent ability of individual p, δi denotes the latent difficulty of ques-

tion i.
To this basic model, we incorporated several additional variables. First, because we

tested participants in two slightly different conditions of the experiment (explained ear-

lier), we incorporated a binary variable, ep, indicating the experimental condition partici-

pant p was assigned to, with values 0 and 1. Second, since we are predicting responses to
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both MC and FIB variants of a question, we could treat the two sets as independent; how-

ever, one would expect MC and FIB variants of a question to have correlated accuracy.

Still, one would also expect MC variants to be easier. To capture both of these expecta-

tions, for each of the i ∈ {1, ..., 24} questions, we separately encoded binary question

format (MC vs. FIB), fi, and question content (1–12), ci. This encoding results in an addi-

tive model for format and content:

Prðypi¼ 1Þ¼ logisticðαp�δci þν f i þβepÞ, (1)

where νf and βe are free parameters associated with question format f and experimental

condition e, respectively. We refer to this model as the baseline, because it incorporates

no information about participant highlighting.

Rather than estimating model parameters {α, δ, ν, β} directly, we perform hierarchical

Bayesian inference by placing priors on these parameters and estimating hyperparameters

of the prior distributions. We specify priors as: αp ∼ N (µα, σα), δc ∼ N (µδ, σδ), νf ∼ N
(0, 2.5), and βe ∼ N (0, 2.5). To avoid identifiability issues, νf and βe were used to iden-

tify the model (see Bafumi, Gelman, Park, & Kaplan, 2005, for advice on dealing with

model identification). All of the feature-based regression models were fit using STAN

(Carpenter et al., 2017). We sample four MCMC chains each having 2,500 samples,3 and

from each chain, we remove the first half of samples as burn-in. The remaining samples

are then averaged together across the four chains to obtain a prediction.

Given our baseline model, it is simple to incorporate highlights and associated parame-

ters. We augment the model by incorporating a highlighting representation vector, hp for

participant p and an associated highlight coefficient vector ωci , yielding:

Prðypi ¼ 1Þ¼ logisticðαp�δci þν f i þβep þωcih
T
p Þ: (2)

The hyperparameters of the baseline model are reused with priors on the highlighting

coefficients being ωci ∼Nðμω,σωÞ.

3.2.3. Performance metrics
Following the guidance of Pelánek (2015), we evaluate models with two performance

measures: area under the ROC curve (AUC) and prediction accuracy. AUC measures

how well a model discriminates between classes. AUC typically lies in the range between

0.5 (no ability to discriminate correct from incorrect) and 1.0 (perfect discrimination).

AUC was computed by merging all the predictions in the evaluation set. Prediction accu-

racy is expressed in terms of proportion model predictions that match the student out-

come. We use a threshold of 0.5 on the model output probability to distinguish

predictions of student correctness and error.

Using these two metrics, we perform cross-validation to assess the value of highlights

on quiz score prediction. As with any modeling problem involving participants answering

questions, we have multiple options for how to perform the cross-validation splits: We
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can hold out participants, hold out questions, or hold out participant questions (i.e., hold

out a random subset of questions from each participant). Holding out participants or ques-

tions allows us to anticipate how our models will fare for new participants and questions,

respectively. In this case, the associated parameters, αp and δci respectively, in Eq. 2 are

uninformative; the sampled parameter values obtained during training are unchanged dur-

ing the prediction process. Holding out participant questions corresponds to the scenario

where we have response data from previous participants, and also limited responses from

a participant whose later responses we wish to predict (Gantner, Drumond, Freudenthaler,

Rendle, & Schmidt-Thieme, 2010; Schein, Popescul, Ungar, & Pennock, 2002). We use

10-fold splits for the held-out participants and participant questions, and 12-fold splits for

the held-out questions.

3.2.4. Simulation results
Consider the model in Eq. 2 with a sentence representation of highlights. For each quiz

question q, this model has a coefficient vector, ωq, that indicates whether highlighting

specific sentences increases or decreases the probability of correctly answering question

q. Fig. 4 depicts these coefficients via an array with one row per question and one col-

umn per sentence in the text. The coloring indicates the sign and magnitude of the coeffi-

cient for the highlighting of a given sentence on a given question. The coefficients are

normalized by question such that the magnitude of the largest is 1.0. These coefficients

are obtained by averaging across cross-validation folds of models trained on subsets of

participants. In each row, the black square indicates the critical sentence in the text that

is sufficient to answer the corresponding quiz question.

Notably, the coefficients on the critical sentences are not the largest in each row, indi-

cating that the model has identified stronger regularities than the straightforward rule that

highlighting a sentence increases the probability of correctly answering questions about

that sentence. The coefficient matrix seems to validate our modeling approach over previ-

ous analyses that have focused on whether the critical sentence is highlighted (Fowler &

Barker, 1974). Although the coefficients reflect statistical regularities in our dataset, it is

Fig. 4. Mean highlighting weights, ωci , for models trained on the sentence representation. The weights are

normalized by question such that the magnitude of the largest weight is 1.0. The black squares indicate which

highlight features were used to generate each quiz question.
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of course possible that they are not predictive of held-out data. To answer this question,

we perform cross-validation.

Fig. 5 shows cross-validation performance of models trained on the four different high-

light representations (see Section 3.2.1). The left graph shows the model’s ability to dis-

criminate correct from incorrect quiz responses, quantified by AUC, and the right graph

shows prediction accuracy, quantified by proportion correct. The horizontal orange line

indicates the performance of the baseline model (Eq. 1), which does not utilize highlight-

ing features. Shading represents � 1 standard error of the mean.4

The four representations are ordered by granularity, that is, the number of features in

the representation. The finer grain representations on the right, which indicate word or

fragment highlights, outperform the coarser grain representations on the left, which indi-

cate sentence highlights or a reduced dimensionality principal components representation.

One would expect this result with sufficient data because the finer grain representations

support more complex models, but we were uncertain a priori whether the number of par-

ticipants in our study would be sufficient to justify the more complex models.

In Fig. 5, performance is evaluated with held-out participant questions. The models

thus have some information about each participant and some information about each

question and simply need to fill in the missing cells. We consider this scenario the most

realistic in our educational context because in a typical course, we will have data from

the students who have taken the course previously, providing information about all ques-

tions, and as the course progresses, we will accumulate data from the particular student

whose performance we wish to predict. Nonetheless, we can conduct cross-validation

studies holding out participants and holding out questions.

Prediction on unseen participants (Fig. 6) yields a pattern of results similar to that with

unseen participant questions. There is a clear benefit for the fragment- and word-highlight

models, indicating that the pattern of highlights that predicts quiz performance is not par-

ticipant-specific. This finding is encouraging because it implies that even without prior

data on a participant, we can use highlighting to predict memory for text material.

Fig. 5. Results for the hold-out participant questions cross-validation split using the feature-based regression

model for the task of predicting quiz score. The orange line is the baseline result.
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Consequently, participants’ comprehension could be assessed online as they first engage

with a text.

Prediction on unseen questions (Fig. 7) does not benefit from any of the highlighting

representations, indicating that the pattern of highlighting attended to by the model is

specific to the questions used for training the model. Although successful transfer to new

questions would be ideal, instructors often reuse a set of (factual) questions from year to

year, and these questions underlie the core material the instructor wishes students to mas-

ter. One possible approach to obtaining generalization across questions would be to

encode questions not by their unique index but by semantic features, allowing for a natu-

ral similarity metric between questions and between a question and the text.

The result on unseen questions suggests that the coefficients on the highlight features

do not transfer to questions outside the training set. Consequently, one might suppose

models would be even more accurate if the highlight coefficients, ωci , were not tied with

hyperpriors. (The hyperpriors impose a weak constraint among coefficients for different

questions.) Indeed, when we remove the hyperpriors on per-question coefficients, we find

a small improvement in model predictions. For example, on the fragment representation

of highlights and held-out participants, AUC rises from 0.791 (SE 0.0012) to 0.808 (SE
0.0016); and PA rises from 0.728 (SE 0.0012) to 0.735 (SE 0.0023). A similar result was

found on the word representation of highlights and held-out participants, AUC rises from

0.791 (SE 0.0011) to 0.808 (SE 0.0018), and PA rises from 0.728 (SE 0.0016) to 0.738

(SE 0.0023).

3.3. Predicting pattern of highlighting

Having established that highlights have value in predicting quiz performance, we turn

to a related question: whether an individual’s highlights in one section of the text help to

predict her highlights in other sections. Highlights indicate concepts that students believe

are key, but they are also a proxy for what a student finds interesting and worthy of

Fig. 6. Results for the hold-out participants cross-validation split using the feature-based regression model

for the task of predicting quiz score. The orange line is the baseline result.
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noting. Predicting highlights might therefore be useful for making recommendations to

students concerning additional readings. Furthermore, discrepancies between predicted

and actual highlights could possibly serve as an indication of mind wandering or other

failures to engage with the material, which in turn could trigger educational interventions.

For this investigation, we explore matrix factorization methods. Matrix factorization is

a popular method for collaborative filtering—problems involving predicting missing fea-

tures of one individual, based on population data. Examples of collaborative filtering

problems include movie and product recommendations (Koren, Bell, & Volinsky, 2009);

in these problems, the data set is a matrix of scores whose cells contain the rating of a

given individual for a given item. In our case, the matrix, H, is binary, where cell hpi
indicates whether participant p has highlighted text segment i. Matrix factorization meth-

ods decompose the matrix into a latent feature vector for each individual and a latent fea-

ture vector for each segment, such that the value in a matrix cell depends on the

compatibility of the corresponding latent feature vectors, which in essence assesses

whether a given type of student tends to be interested enough to highlight a given bit of

material.

We use SPARFA-M (Lan, Waters, Studer, & Baraniuk, 2014) as the algorithm for

matrix factorization. SPARFA-M infers k latent concepts that are used to characterize

each segment of text as well as each participant’s interests. Every text segment i is

described as a k-element vector, wi, whose elements represent the contribution of each

latent concept to the segment. Each participant p is described by a k-element vector, c p,
whose elements represent the participant’s propensity to highlight each of the latent con-

cepts. SPARFA-M models Boolean random variables Xpi ∈ {0, 1} that predict whether

participant p has highlighted text segment i, where

Xpi ∼BernoulliðlogisticðwT
i cpþμiÞÞ,

Fig. 7. Results for the hold-out questions cross-validation split using the feature-based regression model for

the task of predicting quiz score. The orange line is the baseline result.
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and µi represents the intrinsic propensity to highlight segment i. Following Lan et al.

(2014), we choose k = 5; as previous work also found, negligible increases in perfor-

mance are obtained with larger values of k, and they incur an increased computational

cost.

According to the model, the probability of an observed highlight hpi is

PrðXpi ¼ hpiÞ¼ logisticðwT
i cpþμiÞhpi þð1� logisticðwT

i cpþμiÞÞ1�hpi : (3)

Given the highlight observation matrix H, SPARFA-M performs maximum likelihood

estimation with respect to W = [w1 w2. . .], C = [c1 c2. . .], and µ = [µ1 µ2. . .]. Sparsity
constraints are incorporated into the estimation problem, yielding the regularized log like-

lihood:

LðW,C,μÞ¼∑
i,p
lnPrðhpijW,C,μÞ�λ1∑

i
jjωijj1�

λ2
2
∑
i
jjωijj22�

λ3
3
∑
i
jjCjj2F,

where λ1, λ2, and λ3 are regularization coefficients, whose values are selected using three-

fold cross-validation on the training set. To prevent overfitting and improve identifiability,

SPARFA-M has three key assumptions: (a) the number of latent concepts k is small rela-

tive to the number of learners and questions, (b) W is sparse, and (c) the entries of W are

non-negative. Optimization is performed via the FISTA framework (Beck & Teboulle,

2009).

3.3.1. Simulation results
To assess highlight prediction, we performed 10-fold cross-validation to split partici-

pants into training and evaluation sets. All highlighting data from participants in the train-

ing set were used for model training. For each participant in the evaluation set, we

predict the word representation of the highlights in one passage conditioned on the high-

lights in the remaining two passages. The passage used for prediction was chosen at ran-

dom; the other two passages provide context for the prediction. We compare SPARFA-M

to a baseline model whose prediction is simply the mean proportion of participants in the

training set who highlight a given feature (word).

As summarized in Table 2, SPARFA-M outperforms the baseline model on predicting

highlighting patterns, indicating that the highlights a participant makes in several passages

can be useful for determining deviations from population behavior in a third passage.

These results are for the word representation of highlights. Representations based on sen-

tences, fragments, and LPCA obtain similar performance.

The discrepancy between AUC and prediction accuracy can be explained by the fact

that accuracy is sensitive to the decision criterion, and the two models are operating with

different criteria. To illustrate this fact, we changed the decision criterion for prediction

accuracy from 0.5 to 0.2; SPARFA-M obtained an accuracy of 0.688 (SEM 0.00708),

which handily beat the baseline with an accuracy of 0.506 (SEM 0.00686). Because AUC
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provides a measure of discriminability insensitive to the decision criterion, we argue that

AUC is more meaningful as a performance measure for this task, which is echoed in the

literature (Menon & Elkan, 2011).

Fig. 8 provides some insight into SPARFA-M’s use of the latent concepts to predict

the missing highlights. For each of the three passages and each of the five latent con-

cepts, we computed the mean SPARFA-M word weighting for the given passage and con-

cept.5 The figure reveals that each passage has a strongly associated concept, and that

concept is not associated with the other two passages. Thus, SPARFA-M has achieved a

sort of segmentation by passage. We also examined the student × concept matrix, but we

failed to identify any visualization or clustering that offered insight into the model’s

latent representations.

4. General discussion

We described an experiment in which participants read three passages from a biology

textbook and were allowed to highlight as they read. Following the initial reading, partici-

pants had the opportunity to review the passages with highlights. Then, they took a quiz

generated from the factual material from the text. We found that an individual’s idiosyn-

cratic pattern of highlights in a given section of text helps to predict the performance on

quiz questions from this section, as well as to predict what words will be highlighted in

other sections.

Table 2

Predictions of highlights in one passage given the highlights in the other two passages

AUC Accuracy

SPARFA-M 0.765 (0.0101) 0.742 (0.00788)

Baseline 0.683 (0.00754) 0.730 (0.00647)

Fig. 8. Bar graphs of the mean word weighting in the given concept for each of the three passages taken

from one fold of the cross-validation.
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The improvement in prediction metrics that result from using highlighting data is small

in magnitude but reliable. This finding is not surprising: We are using the highlighting

choices as a proxy for the complex interpretative and memory processes a reader under-

goes when exposed to novel material. Highlights provide a peek into these processes, but

obviously not a complete record. As in many other big data scenarios involving human

learning and education, the hope is that many weak predictors can be identified and then

combined to obtain stronger predictions. Whereas data collection from many sources

requires effort or inconvenience on the part of the learner (e.g., surveys, EEG or skin

response recording, gaze tracking), highlighting is natural to many students and thus

imposes little burden. Fortunately, digital textbooks provide other lightweight data

sources, including page reading times, scrolling behavior, electronic notes and questions,

and the geolocation and time at which an individual engages with the material.

Although the focus of our work is on whether highlights are useful as a data source

for modeling student comprehension, our data provide some evidence concerning theoreti-

cal issues, in particular, whether highlighting might engage a deeper form of processing

of the material. We found a small but reliable benefit in performance for participants who

highlight over those who do not. And we found that individuals who were more selective

in their highlights—as measured by highlighting efficiency—showed a marginal benefit in

performance. However, it is impossible to determine whether highlighting choices are the

causal factor or merely correlated with a latent ability factor.

A limitation of this study is the short span and limited content of our experiment. Only

three passages are studied for under 30 min total, and the lag between study and test is

fairly brief. It is possible that the benefit of highlighting is fleeting: A student may

remember the highlights he or she made 5 or 10 min earlier and may thus benefit from

highlighting, but this benefit diminishes if the test is delayed by a week. We acknowledge

this limitation, but argue that indirect benefits of highlighting may occur. For example,

the external memory function of highlighting may lead to more consideration given to

the highlighted paragraphs on delayed review. And even a short-lived memory boost from

highlighting may facilitate understanding of subsequently learned material: To scaffold

one concept upon another, the recently learned concepts must be accessible.

From a data mining perspective, the short span and limited content of our experiment

impose a lower bound on what inferences may be drawn from highlights. Consider the

data that could be collected from an online college course involving the study of hun-

dreds of pages of text over the span of a semester. Online learning platforms, such as

Hypothesis or Openstax, offer the opportunity to observe student interactions with a

broader range of content over longer periods of time. The richer the data source, the more

likely statistical methods are to find higher order regularities. This fact is in large part the

explanation for the success of deep learning over the past decade.

The modeling approach we have taken in this article will need to be extended as richer

and larger data sources are obtained. First, we will need to advance from the simple

regression and latent-variable models examined here to deep-learning models, whose

complexity will be warranted given sufficient data. Second, we will need to give more

consideration to the representation of highlights. Our passages were short enough that we
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could encode highlights by the specific position in the text they occupied. This encoding

allowed us to sidestep issues of natural language content. For a larger (and evolving) text

base, position-specific encodings will be infeasible and would sacrifice the information

content of the text itself. Consequently, we expect word and sentence embedding methods

(Devlin, Chang, Lee, & Toutanova, 2018; Pennington, Socher, & Manning, 2014) to be

useful as we scale up the approach. This approach has the additional benefit of being

robust to updates of a text; whereas traditional publishing methods produce infrequent

updates, web-based publishing permits rapid and continual updating, and it is therefore

prudent to merge highlighting data from different versions of a publication.

To the extent that highlights are reliably predictive—of either learning or student inter-

ests—they might be leveraged to improve electronic textbooks in several ways.

1. If highlights provide a reliable indicator that a student is having difficulty compre-

hending or remembering material, immediate interventions might be performed to

address the situation.

2. Students with highlighting patterns that predict poor performance or that do not

match highlighting patterns of an instructor might be offered training to improve

highlighting strategies (Leutner et al., 2007). Indeed, Miyatsu et al. (2018) and Yue

et al. (2015) argue that training students to highlight appropriately is critical to

obtaining value from the study strategy, and showing students highlights from an

informed instructor has proven beneficial (Hartley et al., 1980; Lorch & Klusewitz,

1995; Nist & Hogrebe, 1987). Following training, data-driven approaches might be

used to assess adherence to a strategy. Even if highlights from an informed instruc-

tor are not available, one could evaluate the success of a pure data-driven approach

in which the predictive model is inverted to determine patterns predictive of best

performance.

3. Highlights predict not only performance but also student focus and interest. To the

extent that highlights can predict what will be highlighted in the future, recom-

mender systems might be constructed to guide students to material likely to be of

interest. Kintsch (1980) proposed a distinction between cognitive and emotional

interests. Whereas cognitive interests pertain to the key substantive content of a text,

emotional interests capture attention even if they are peripheral to the main lessons.

Readers are likely to be motivated and energized by emotional interests (Harp &

Mayer, 1997). One intriguing direction for future research is to tease apart highlights

that reflect these distinct interests. Another possibility is to cluster students by the

latent interests manifested in their highlighting patterns, with the potential for form-

ing work groups that either share interests or have complementary interests.

It might be considered ambitious to imagine that the modest predictive value we

observe for highlights would be sufficient to reliably target students with an intervention.

However, the subtle patterns we observe might provide sufficient evidence for a skilled

human instructor to determine whether and what sort of intervention might benefit the

student. And automatic interventions, even if poorly targeted, will provide additional

feedback useful for improving comprehension models. For instance, if a student is given
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an immediate question to bolster her comprehension, her answer provides a stronger indi-

cation of comprehension than does a delayed quiz.

In conclusion, we have shown that highlights are a viable data source for inferring the

cognitive state of the reader. If we are able to obtain some signal in a laboratory experi-

ment, we are optimistic that an even stronger signal may be obtained in an authentic

learning scenario. Our current research is moving from the laboratory to an electronic

textbook platform. Our future work will also investigate whether other types of annota-

tions, such as notes in the margin, and implicit measures, such as page dwell times and

scrolling behavior, can also be of assistance in the prediction of retention, comprehension,

and engagement.
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Notes

1. Underlining and highlighting are treated as equivalent techniques in the literature.

For example, Fowler and Barker (1974) found no difference between the tech-

niques.

2. The hyperparameter, m, restricted the logit of the observed probability to lie in

[−m, +m] rather than [−∞, +∞]. We considered m ∈ [1, 10]. Cross-validation

selected m = 7.

3. The number of iterations was chosen based on models with the largest number of

features—and hyperparameters—while maintaining convergence as determined by

the split R statistic and Bayesian fraction of missing information (Betancourt,

2017).

4. The standard errors have been adjusted to remove variability arising from the ran-

dom factor—the data split—while retaining variability across data splits in the rela-

tive performance of highlighting representations. We use the procedure suggested
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by Masson and Loftus (2003), which results in corrected error bars whose overlap

indicates whether performance differences are statistically meaningful.

5. Because the concept indices are arbitrary, the indices shift from one fold of cross-

validation to the next. Thus, we show only one fold in the visualization. Others are

similar in their interpretation.
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